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An isothermal problem on the equilibrium of a free magnetic fluid surface in an an- 
nular gap is considered. Conditions are investigated for the existence of a solu- 
tion for different system temperatures. 

The question of the existence of axisymmetric equilibrium modes of a free magnetic fluid 
surface (M_F) in the annular gap between two coaxial cylinders (Fig. 1) was studied in [I]. 
A current I flows in the inner cylinder (radius r2), while the outer cylinder is nonconduct- 
ing. The temperature T (everywhere within) of the MF was assumed to be homogeneous and con- 
stant, equal to the temperature of the solid walls, and the properties of the magnetic medium 
were constant independent of T. Within the framework of such an isothermal formulation, 
existence conditions are found for equilibrium modes, and their properties are investigated. 

It is interesting to examine the equilibrium conditions for the configuration displayed 
in Fig. I with the temperature dependences of the MF properties taken into account while re- 
maining here within the framework of the isothermal formualtion. As in [I], we shall here 
consider the case of the MF being weightless. 

,!. Temperature Dependences of the MF Properties. Taking into account that the MF mag- 
netization can reach a high level in the saturation state without developing hysteresis ef- 
fects in the zeroth magnetic field, magnetic fluids should be referred to the category of 
superparamagnets. According to [21, the magnetic susceptability of superparameters X can be 
represented in the following form as a function of the temperature T: 

Z (T) nV~ (T) I~ (T), ( 1 ) 
3kBT 

where k B = 1.38"10 -23 J/K. 

If we take a linear thermal-expansion law, then V(T) = V0(] + ~vT). 

The temperature T does not exceed the Curie temperature 0, which is the point of a phase 
transition of the second kind. Here ~ ~ I03~ while the coefficient of volume expansion 
varies within the limits ~V = I0-~-I0-6~ Consequently, the thermal expansion can be 
neglected to a high degree of accuracy by setting 

V (T) = Vo. (2) 

The function Is(T) has the form [2] 

& (T) -- 

where m, = Is(0) is a certain constant. 

m, [ +  1i/2 
V-s (0 -- T)j , 

Using the notation m0 = m, V0, we obtain from (7)-(3) 

nm~ e--T 
z(T)  = 3kB 0 T 

The quantity m0 in (4) is the magnetic moment of a ferromagnet particle at T = 0. 

The temperature dependence of the surface tension coefficient ~ has the following form 
for the majority of fluids [3] 

(3) 

(4) 
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Fig. I. System configuration. 
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Fig. 2. a) Dependence of the Bond magnetic number (Bom) on the temperature (T) 
(liquid ME-22, I = 0.3 A); b) critical values of the Bond magnetic number (Bo~*) 
on the gap width (D) (wetting angle is a = 60~ 

~(T)  = g(Tc - -  T)P, (5 )  

where y > 0 is a constant; p = 1.23, and Tc is the temperature of the critical Van der Waal's 

isotherm. 

It is convenient to seek the solution of the equilibrium problem in dimensionless form. 
Then the Bond magnetic number Bo m will be the characteristic parameter that equals in this 

problem [I] 

B o ~  - -  ~~ , 
8~2~r2 

where ~0 = 47" 10 -7 Gn/m. 

Taking (4), (5) into account, we obtain 

~tonm2ol ~ 
Bo~ = 24a2?kBOr2 

0 - - T  

T (To - T)~ 
(6) 

We go over to the dimensionless temperature T by setting 

T = T c T .  

It is hence seen that o < T < I. 
be written in the form 

(7) 

Taking (6) and (7) into account, the expression for Bo m can 

Born (T) = CI ~- Q - -  -~ Y(1 _:7)~ ' (8) 

C = ~~176 
24a2?k B Or.,T~ ' (9)  

where Q = G/T c. Furthermore, we omit the bar over the ~ everywhere. The current I is liber- 
ated separately in (8) since the change in Bo m (in experiment) occurs for the very same tem- 

perature. 

2. Investisation of the Equilibrium Conditions. Let us introduce the dimensionless wid 
width of the gap D = rl/r2, and let the wetting angles on the cylinder walls be identical: 

It was shown in [I] that equilibrium modes exist if and only if Bom < Bo~*, where 

B o ~ - -  4 . 9 - ~ 5 s i n a  @ l , l ~ q -  1. (10 )  
( D - -  1) r,s8 

We select the case of "low" and "high" currents separately to study the influence of the 
temperature dependences x(T) and o(T) on the existence of equilibrium modes. 
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Fig. 3. Dependence of the critical gap width (D~*) 
on the temperature (T) in the case of "low" currents 
(fluid ME-22; Ii = u.25 A; I2 = 0.3 A; I = 0.37 A). 
Dashed lines are asymptotes. 

Fig. 4. Dependence of the critical gap width (DT*) on 
on the temperature (T) in the case of "high" currents 
(fluid ME-22; 11 = 0.39 A; I2 = 0.45 A; 13 = 0.6 A). 

"Low" Currents. Let 0 < I < I (for I = 0 the equilibrium modes always exist). 
is that value of the current for which Bom(T) = Bo** = I I~ + I 

m ~  �9 " 

It follows from a comparison of (8), (9), and (10) that 

Here 

i=(l__Tmin)p/~ [ (l'la-~- 1)Train ] '/2 
C (Q -- Tmin) ' 

(11) 

where Tmi n is the temperature corresponding to the minimum of the function BOm(T) (Fig. 2) 

Train = Q(P-!- ])-- ]/Q2(P-I- I)2--4Qp (12) 
2p 

Comparing (8) and (10), the deduction can be made that a temperature band exists [TI(I), 
T2(I)] that contains the point Tmin at which equilibrium exists for any values of the gap 
width D. Here Ti(I) , i = I, 2, are roots of the equation 

CU- Q -- T 1 . 1 a ~  1. (13) 
T (1 -- T)P 

The transcendental algebraic equation (13) for the unknown T has two roots, as follows 
from the figure: 0 < Tz < Tmin, Tmi n < T2 < I. The values of Tz and T2 can be found by a 
numerical method. 

As I grows, the temperature band [TI(I), T2(I)] diminishes, going over into the point 
Tmi n for I = I. 

If TCA = {[0, TI(1)]U[T2(I ), I]}, then a domain can be indicates for the existence of equi- 
librium modes in the parameter D, in other words, for each value of TCA equilibrium modes 
exist if D < D~*(T), and do not exist otherwise. 

The value of D~*(T) is determined from (8) and (10): 

D;*(T)=[ 4,9-t- 5 sin a ]o,~3 
CI~ Q - - T  1 , 1 a - -  1 '  + 1. (14) 

T (t  - -  T)~ 

Graphs of the function D~*(T) are shown in Fig. 3 for different values of I. 

"Hish" Currents. Let us consider the case I ~ I, where I is given by (11), as before. 
In this case D[*(T) is defined for any T [in conformity with (14)], i.e., for any tempera- 
ture T there exists a D~*(T) such that there ard no equilibrium modes for D > D[*(T). The 

**(T) (the parameter I) is displayed in Fig 4. single-parameter family of function D I 
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Therefore, in the case of "low" currents there is an optimal temperature range [Tz(I), 
T2(I)] in which equilibrium modes exist for any values of D; conversely, in the case of "high 
currents a gap width D~* exists for any temperature T such that equilibrium is impossible for 
D ~> D**. 

3. To illustrate the results obtained we examine the fluid ~-22 (magnetite in ethanol). 

A typical value of the volume concentration is n = 1023 m -s From [2] m0 = 0.29"I0 -z7 
A/m and 0 = 858~ We find for y and Tc [4]: y = 2 95-10 -2 N/m.~ 1"23 Tc = 516.3~ The 
conductor radius is r2 = 10 -2 m. We hence obtain for the values of Q and C from (8), (9): 
Q = 1.67 and C = 3.1 A -2. The dimensionless temperature T--min is T--mi n = 0.547 according to 
(12), or in dimensional form Tmi n = I0~ 

Let the wetting angle be ~ = 60 ~ . Then the boundary of the "low" and "high" currents 
domains is found from (11): I = u.37 A. 

Therefore, for the current value I = 0.3 A, the optimal temperature range is the range 
0.28 < T < 0.77. 

Dependences for several values of I are presented in Figs. 3 and 4 for the fluid MI~-220 

In conclusion, we note that, as has been noted in [I], the boundary of the domains for 
equilibrium mode existence in this problem agrees with the boundary of their stability domain 
relative to axisymmetric disturbances. 

NOTATION 

rl, r2, inner and outer cylinder radii; I, current; T, temperature; X, magnetic sus- 
ceptibility; ~0, a magnetic constant; kB, Boltzmann constant; n, volume concentration of fer- 
romagnet particles; V, volume of ferromagnet particles; Is(T) , spontaneous magnetization of 
the particle substance; 0, Curie temperature; d, is the surface tension coefficient; BOm, 
magnetic Bond number; ~z, ~2, wetting angles on the walls of the outer and inner cylinders, 
respectively; ~V, coefficient of volume expansion of the solid-phase particles; V0, particle 
volume at T = 0~ 
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